
Chapter 7

Extremal Problems

No matter in theoretical context or in applications many problems can be formulated as
problems of finding the maximum or minimum of a function. Whenever this is the case,
advanced calculus comes into play. In Section 7.1 relevant terminologies are reviewed. In
Section 7.2 unconstrained extremal problems are treated. In Section 7.3 Taylor’s Expan-
sion Theorem for functions of several variables is established and subsequently applied to
the study of local extrema. Next we turn to constrained extremal problems. Problems
with a single constraint is studied in Section 7.4 where the basic Hölder Inequality is
proved as an application. Problems with multiple constraints are studied in Section 7.5,
where the theorem on reduction to principal axes is proved as an application.

7.1 Extrema and Local Extrema

Recall in calculus we learned how to use derivatives to find the maximum and minimum
of a function over some interval. The terminologies introduced there still make sense
for functions of several variables. Let us recall these definitions but now in the higher
dimensional setting.

Let f be a real-valued function defined in a non-empty set S in Rn. A point p ∈ S is
called a minimum point and maximum point of f if

f(p) ≤ f(x) , and f(p) ≥ f(x), ∀x ∈ S ,

respectively. The corresponding value is called the minimum or minimum value (resp.
maximum or maximum value) of f . This value is called a strict minimum(resp.
strict maximum) if the inequality sign becomes strict unless x = p in the definition
above. The point p is called a local minimum point and local maximum point of f
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if there exists some ball B containing p such that f(p) ≤ f(x) and f(p) ≥ f(x)) for all
x ∈ S ∩ B respectively. A minimum or maximum point is called an extremum or an
extremum point. A strict extremum point and a local extremum point are similarly de-
fined. In some occasions it is necessary to stress the difference between an extremum and
a local extremum, the terminologies a global extremum or an absolute extremum
will be used for an extremum. Whenever we say f attains its maximum or minimum in
S, it means that there is a maximum point or minimum point for f in S.

An interior point x of S is called a critical point if all (first) partial derivatives of
f exist and vanish at x, that is, its gradient is a zero vector ∇f(x) = (0, · · · , 0). The
following theorem tells us how to find interior extremum points.

Theorem 7.1. Let p be an interior point of f . If it is a local extremum where the partial
derivatives of f exist, it must be a critical point of f .

Proof. Assume that p is a local minimum, say. For a fixed j ∈ {1, · · · , n}, the function
ϕ(t) = f(p + tej) is well-defined for all small t and has a local minimum at 0. Hence
ϕ′(0) = 0 according to calculus. By definition, we have

∂f

∂xj
(p) = lim

t→0

f(p+ tej)− f(p)

t

= lim
t→0

ϕ(t)− ϕ(0)

t
= ϕ′(0)

= 0 ,

so p is a critical point of f .

Some remarks are in order.

First, two conditions are required for a critical point, namely, the existence of the
partial derivatives and the vanishing of the gradient at this point. For instance, the
function f(x) = |x| attains minimum at 0 but 0 is not a critical point of f . Why? f is
not differentiable at 0.

Next, consider the function g(x) = x in [0, 1]. It attains maximum and minimum at 1
and 0 respectively. However, g′(x) ≡ 1. It shows that the interior point condition in this
theorem is necessary.

Third, consider the function h(x) = x3. It has a critical point at 0, but 0 is neither
a minimum nor a maximum point. A non-extremal critical point is called a saddle or a
saddle point. Now let us look at some examples in two variables.
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Example 7.1. Consider the function

f(x, y) = x2 + y2 + 5 , (x, y) ∈ B ≡ B1((0, 0)) .

We have ∇f(x, y) = (2x, 2y) = (0, 0) if and only if (x, y) = (0, 0). So (0, 0) is the unique
critical point of f in B. It is clear that it is the minimum of f over B with minimal value
5. On the other hand, it is also clear that the maximum of f attains at every point on
the boundary of B with maximal value 6.

Example 7.2. Consider the function

g(x, y) =
√
x2 + y2 , (x, y) ∈ B ,

where B is given as in the previous example. Although it is clear that (0, 0) is the mini-
mum point with minimal value 0, it is not a critical point, for g(x, 0) = |x| and the partial
derivative gx does not exist at (0, 0).

Example 7.3. Consider

h(x, y) = x2 − y2 , (x, y) ∈ R2 .

Since h(x, 0) → ∞ as x → ∞ and h(0, y) → −∞ as y → ∞, this function is unbounded
from above and from below. Consequently it has no absolute minimum nor absolute max-
imum. On the other hand, ∇h(x, y) = (2x,−2y) shows that (0, 0) is the unique critical
point of h. As h(x, 0) > 0 for all non-zero x and h(0, y) < 0 for all non-zero y, h assumes
both positive and negative values around origin. Therefore, the critical point (0, 0) is
neither a local minimum nor a local maximum. It is a saddle.

Example 7.4. Consider

j(x, y) =
3

4
y2 +

1

24
y3 − 1

32
y4 − x2 , (x, y) ∈ R2 .

It admits three critical points, namely,

(0,−3), (0, 0), (0, 4) ,

where (0, 0) is a local minimum and (0,−3), (0, 4) are local maximum. The function tends
to −∞ as |(x, y)| → ∞, so it does not have any absolute minimum. On the other hand, it
does have an absolute maximum. Since every interior maximum must be a critical point.
This absolute maximum point is either (0,−3) or (0, 4). Observing j(0,−3) = 99/32 is
less than j(0, 4) = 20/3, we conclude that (0, 4) is the absolute maximum of j.



4 CHAPTER 7. EXTREMAL PROBLEMS

7.2 Unconstrained Extremal Problems

In an extremal problem one is asked to find the extremum of a given function over some set.
Problems of this type come up both in theory and applications. For practical problems,
people certainly would like to find the extremum points, determine the extremal values,
and design algorithms to locate them in an efficient way. The existence of an extremum
is usually not much a question as it is clear from the context. However, at the theoretical
level the existence of an extremum is an important issue. When the function or the set
under consideration is very complex, it is not clear whether the extremum is attained or
not. In view of this, we separate the issue into two questions:

Question A. Is there any extremum ?

Question B. How can we find these extrema ?

Here we kick off with the case in which a function defined in a closed, bounded set.
It may be regarded as the simplest case since Question A has a positive answer. Recall
that a closed, bounded set is called a compact set. The following result is a basic one.

Theorem 7.2 (Extremal Value Theorem). Let S be a compact set in Rn and f a
continuous function in S. Then it must attain its minimum point and maximum point in
S.

Backing up by this theorem, we consider Question B. As in many occasions, the set
under consideration is of the form S = G ≡ G ∪ ∂G where G is a bounded, open set.
Then G is a compact set. When f is differentiable in G, by Theorem 7.1 any interior
local extremum must be a critical point of f . Hence by solving the system of equations
given by ∂f/∂xj(x) = 0 , j = 1, · · · , n, we can determine all critical points of f which
are candidates for extrema. Conceivably there may be some extrema on the boundary
of G. Together with these boundary extrema, we can determine which are maxima or
minima by comparing their values. In many cases, finding boundary extrema reduces to
an extremal problem of lower dimension. The following two examples illustrate how one
can proceed.

Example 7.5. Find the maximum and minimum of the function

f(x, y) = x2 − xy − y2 + x− 2y + 3 , (x, y) ∈ R ,

where R is the square [−1, 1]× [−1, 1]. By Extremal Value Theorem its extrema must be
attained. To find the critical points, we calculate its gradient and set it to zero:

∂f

∂x
= 2x− y + 1 = 0,

∂f

∂y
= −x− 2y − 2 = 0 .
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This system admits a single solution (−4/5,−3/5) which lies inside R, so it is the unique
critical point of f . On the other hand, the boundary of this rectangle consists of four
line segments lj, j = 1, · · · , 4. Along l1, (1, y), y ∈ [−1, 1], the function becomes ϕ(t) ≡
f(1, t) = −t2− 3t+ 5. By looking at ϕ′ we see that ϕ is strictly decreasing for t ∈ [−1, 1],
so only (1,−1) and (1, 1) are candidates for extremum points for f . Next along l2, the
function η(t) ≡ f(t, 1) = t2, t ∈ [−1, 1], has a minimum at t = 0, so (0, 1) together with
the end points (1, 1), (1,−1) are candidates for extreme points. A similar analysis on l3
and l4 shows that other possible extremum points are (−1,−1/2), (−1, 1), (−1,−1). Now
a direct evaluation gives

f

(
−4

5
,−3

5

)
=

122

25
, f(1, 1) = 1, f(0, 1) = 0,

f(−1, 1) = 1, f

(
−1,

1

2

)
=

15

4
, f(−1,−1) = 3, f(1,−1) = 6 .

Hence the minimum of f over R is attained at (0, 1) with minimum value 0, and the
maximum is attained at (1,−1) with maximal value 6.

Example 7.6. A delivery company accepts only rectangular boxes the sum of whose
length and girth (the perimeter of a cross-section) does not exceed 270 cm. Find the
dimensions of an acceptable box of largest volume. Let x, y and z be the length, width
and height of the box respectively. We want to maximize the volume which is equal to
xyz under the condition x+2y+2z = 270. By writing the condition as x = 270−2y−2z,
we remove x in xyz and the problem reduces to maximize the function

g(y, z) = (270− 2y − 2z)yz ,

over the triangle D where

D = {(y, z) : y, z > 0, 2y + 2z < 270 } .

By solving ∂g/∂y = 0 and ∂g/∂z = 0 we get four solutions (0, 0), (0, 135), (135, 0) and
(45, 45). Only (45, 45) is the critical point in D. It is obvious that g vanishes along the
boundary of D. Since g is a non-negative function, (45, 45) is the maximum and the
boundary consists of minimum points. The dimensions of the desired box are 90 (length),
45 (width) and 45 (height).

When the underlying set is not compact, Question A must be studied prior to Ques-
tion B. Let us look at some one dimensional cases. Consider the following differentiable
functions defined on R:

f1(x) = x3, f2(x) = 3− x2, f3(x) = (1 + x2)−1, f4(x) = x2e−x
2

.
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It is clear that f1 goes to ±∞ as x → ±∞, hence it does not have any extremum. The
function f2 is bounded from above but goes to −∞ as |x| → ∞. It has a unique maximum
point at 0 but no minimum. The function f3 is bounded between 0 and 1, tends to 0 as
|x| → ∞ but never attains 0. It has a unique maximum at 0 but no minimum. Finally, f4
is a non-negative function which tends to 0 at infinity, but it has two maximum points ±1
and a unique minimum at 0. The situation is much more complicated in higher dimensions.

From these examples we can see that the behavior of the functions at infinity plays
an important role in the attempt to answer Question A. To obtain any meaningful result
boundary behavior must be taken into account.

Theorem 7.3. Let f be a continuous function in Rn. Suppose that there exist some real
numbers α, a ball B and a point p ∈ B such that f(x) ≥ α (resp. f(x) ≤ α) for all x
outside B and f(p) < α (resp. f(p) > α) Then the minimum (resp. maximum) of f over
Rn is attained in B.

Proof. If suffices to prove the case of minimum. Applying Theorem 7.1 to the function
f restricted to the compact set B, there is some w ∈ B such that f(w) ≤ f(x) for all
x ∈ B. In particular, taking x = p we see that f(w) ≤ f(p) < α. Now, for x lying outside
B, f(x) ≥ α > f(w). We conclude that w is the minimum point of f over the entire
space.

A function f in Rn is called tends to ∞ uniformly as x → ∞ if for each M > 0
there corresponds some R such that f(x) ≥M for all x ∈ Rn \BR(0). Similarly it tends
to −∞ uniformly if for each M > 0 there corresponds some R such that f(x) ≤ −M
for all x ∈ Rn \BR(0). It is clear we have

Corollary 7.4. Let f be a continuous function which tends to ∞ uniformly as x → ∞.
Then it attains its minimum.

Proof. Let α = f(0) + 1. As f tends to ∞ uniformly, there is some R such that f(x) > α
for all x, |x| ≥ R. The corollary follows from Theorem 7.2.

Corollary 7.5. Let f = g + h where g and h are continuous in Rn. Suppose that

(a) g(x) ≥ ρ|x|α , |x| ≥ R, for some ρ, α > 0.

(b) lim|x|→∞
|h(x)|
|x|α

= 0 .

Then f attains its minimum in Rn.
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Proof. First of all, fix an R such that |h(x)| ≤ ρ
2
|x|α for all x, |x| ≥ R. We have

f(x) = g(x) + h(x) ≥ ρ|x|α − ρ

2
|x|α

≥ ρ

2
|x|α, ∀x, |x| ≥ R ,

which shows that f tends to ∞ uniformly.

One obtains corresponding statements for the maximum in these corollaries by looking
at −f instead of f .

Example 7.7. Find the distance from the origin to the plane x + y + z = 1. Well, the
square of the distance, given by x2 + y2 + z2, shares the same minimum point with the
distance but is easier to calculate. Using z = 1 − x − y to remove the variable z, the
problem is reduced to finding the minimum of the function

f(x, y) = x2 + y2 + (1− x− y)2 = 2x2 + 2y2 + 2xy − 2x− 2y + 1

over the plane. By the splitting

g = 2x2 + 2y2 + 2xy ≥ x2 + y2 , h = −2x− 2y + 1 ,

Corollary 7.4 (α = 2) asserts that the minimum is attained. To find it we set ∇f = (0, 0)
to get {

4x+ 2y = 2,

4y + 2x = 2 ,

This is linear system whose solution is given by x = y = 1/3. Therefore, the minimum
of the square of the distance function attains at the point (1, 1, 1)/3 and the distance is
1/
√

3. Of course, it is the same as calculated via the formula in Chapter 2.

Lastly, we consider the problem where f is defined in some open set, continuous in its
interior but not necessarily up to the boundary. Things could be very complicated and
one needs to deal with the problem case by case.

A continuous function f defined in some open G is said to tend to ∞ (resp. −∞)
uniformly at the boundary if for each M > 0 there exists some open subset G′ with
compact closure in G such that f(x) ≥ M (resp. f(x) ≤ −M) for all x ∈ G \ G′. In
practise G′ is usually taken to be

G′ = {x ∈ G : dist(x, ∂G) > ρ , |x| < R},

for some small ρ > 0 and large R.
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Theorem 7.6. A function defined in the open G which tends to∞ (resp. −∞) uniformly
at the boundary attains its minimum (resp. maximum).

The proof is similar to that of Theorem 7.2 which we omit.

Example 7.8. * Find the minimum of the function h(x, y) = xy + 2x− log x2y over the
first quadrant. Here the set is given by the unbounded, open set D ≡ {(x, y) : x, y > 0}
and h blows up at its boundary. We claim that h tends to ∞ uniformly as (x, y)→ ∂D.
The proof is a bit delicate. Given M > 0, we first fix a small number δ1 ∈ (0, 1) such that
h(x, y) ≥ M whenever (x, y) ∈ D and y ≤ δ1. For, we use the fact that t − log t ≥ 1 for
all t > 0, we have

h(x, y) = xy + 2x− 2 log x− log y ≥ − log y ,

so such δ1 always exists. Next, we look at the subset {(x, y) : x > 0, y ≥ δ1}. We have

h(x, y) ≥ −2 log x− log δ1

so there is some δ2 ∈ (0, 1) such that h(x, y) ≥M for all x ∈ (0, δ2), y ≥ δ1. Summing up,
the function is greater than or equal to M in the subset S ≡ {(x, y) : y ∈ (0, δ1] or x ∈
(0, δ2]}. Now, consider the set D1 = D \ S. Each (x, y) ∈ D1 satisfies x > δ2 and y > δ2.
Therefore,

h(x, y) =
xy

2
+
xy

2
+ 2x− 2 log x− log y

≥ δ2
2
y +

δ1
2
x+ 2x− 2 log x− log y

≥
(

2 +
δ1
2

)
x+

δ2
2
y − 2 log x− log y

≥ ρ(x+ y)− 2 log x− log y

≥ ρ(x+ y)− 3 log(x+ y) , ρ = min

{
2 +

δ1
2
,
δ2
2

}
.

Using the fact log r/r → 0 as r →∞, we can fix a large R such that h(x, y) ≥ M for all
(x, y) ∈ D′ ≡ D1 \BR(0). More precisely,

D′ =
{

(x, y) :
√
x2 + y2 < R, x > δ2, y > δ1

}
.

We conclude that h tends to ∞ uniformly as x approaches ∂D.

To determine the minimum we take partial derivatives. It is readily found (2, 1/2) is
the unique minimum. Since this is the only critical point, it must be the minimum point.
The minimum value of h is given by h(2, 1/2) = 5+log 2. From this example you see that
verifying the boundary behavior could be very nasty.



7.3. TAYLOR’S EXPANSION 9

7.3 Taylor’s Expansion

In some applications people are interested in determining whether a critical point is a
local minimum point or a local maximum point. In the single variable case, the second
derivative test is an effective method. Of course, in order to apply this test one has to
assume the function under consideration is twice differentiable. It is natural to wonder if
the second derivative test could be extended to the multi-dimensional situation. In fact,
this is true. Recalling the proof of the second derivative test is based on Taylor’s expan-
sion, our first task is to obtain the multi-dimensional version of the Taylor’s Expansion
Theorem.

To simplify notation we introduce a differential operator: for a fixed a ∈ Rn,

a · ∇f =
n∑
j=1

aj
∂f

∂xj
.

Powers of the differential operator is understood as repeated applications. For instance,

(a · ∇)2f =
n∑
k=1

ak
∂

∂xk

(
n∑
j=1

aj
∂

∂xj

)
f

=
n∑

j,k=1

ajak
∂2f

∂xjxk
,

(a · ∇)3f =
n∑
k=1

ak
∂

∂xk

(
n∑
j=1

aj
∂

∂xj

)2

f

=
n∑

i,j,k=1

aiajak
∂3f

∂xi∂xj∂xk
.

When n = 2, we have

(a · ∇)2f = a21
∂2f

∂x2
+ 2a1a2

∂2f

∂x∂y
+ a22

∂2f

∂y2
,

and

(a · ∇)3f = a31
∂3f

∂x3
+ 3a21a2

∂3f

∂x2∂y
+ 3a1a

2
2

∂3f

∂x∂y2
+ a32

∂3f

∂y3
,

and etc.
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Theorem 7.7. Let f be a function defined in some ball B ⊂ Rn. Suppose that all partial
derivatives of f up to order k + 1, k ≥ 0, are continuous in B. Then for x, p ∈ B,

f(x) = f(p) + (x− p) · ∇f(p) +
((x− p) · ∇)2f(p)

2!
+ · · ·+ ((x− p) · ∇)kf(p)

k!

+
((x− p) · ∇)(k+1)f(c)

(k + 1)!
,

where c is a point on the line segment connecting x and p.

Proof. * Recall the one dimensional Taylor’s Expansion Theorem. For ϕ on some interval
(a, b) and 0 ∈ (a, b). Suppose that ϕ has continuous derivatives up to order k+1 on (a, b).
Then

ϕ(t) = ϕ(0) + ϕ′(0)t+ · · ·+ ϕ(k)(0)

k!
tk +

ϕ(k+1)(c)

(k + 1)!
tk+1 , (7.1)

where c lies between t and 0. For the given f , ϕ(t) ≡ f(p + t(x − p)) is a function of t.
Note the line segment connecting x to p lies inside B. The regularity assumption on f can
be translated to the regularity of ϕ. By the chain rule we see that the one dimensional
Taylor’s expansion above is valid. It suffices to express the derivatives of ϕ in terms of
the partial derivatives of f . Indeed, by the Chain Rule

ϕ′(t) = (x− p) · ∇f(p+ t(x− p))

and in general
ϕ(j)(t) = ((x− p) · ∇)j f(p+ t(x− p)) , j ≥ 1 .

The theorem follows from the expansion formula for ϕ above.

Formula (7.1) will be proved in MATH2060 under more precise assumptions.

Taking k = 1 in the Taylor’s Expansion Theorem,

f(x) = f(p) +
n∑
j=1

∂f

∂xj
(p)(xj − pj) +

1

2

n∑
i,j=1

∂2f

∂xi∂xj
(c)(xi − pi)(xj − pj) . (7.2)

When n = 2, writing x = (x, y) and p = (x0, y0), we have

f(x, y) = f(p0) +
∂f

∂x
(p)(x− x0) +

∂f

∂y
(p)(y − y0)

+
1

2

∂2f

∂x2
(c)(x− x0)2 +

∂2f

∂x∂y
(c)(x− x0)(y − y0) +

1

2

∂2f

∂y2
(c)(y − y0)2.

The symmetric matrix

∇2f ≡
(

∂2f

∂xi∂xj

)
, i, j = 1, · · · , n ,
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is called the Hessian matrix of f . By the Principal Axis Theorem, see Chapter 2, every
Hessian matrix can be diagonalized by an orthogonal matrix. The diagonal entries of the
resulting diagonal matrix are precisely the eigenvalues of the Hessian matrix. Now we can
state the second derivative test in higher dimensions.

Theorem 7.8 (The Second Derivative Test). Let p be a critical point of f . Suppose
that all partial derivatives up to order two are continuous near p. Let λj, j = 1, · · · , n be
the eigenvalues of the Hessian matrix of f at p.

(a) p is a strict local minimum point if all λj’s are positive,

(b) p is a strict local maximum point if all λj’s are negative,

(c) p is a saddle if there are two λj’s with different sign.

A local maximum (resp. local minimum) p is called a strict local maximum (resp.
strict local minimum) if there exists an open set U ⊂ G containing p such that
f(p) > f(x) (resp. f(p) < f(x)) for all x 6= p, x ∈ U . A critical point p is called a
saddle if for each r > 0, there are points x, y ∈ Br(p) such that f(x) < f(p) < f(y).

Proof. Let R = (rij) be the orthogonal matrix that diagonalizes the Hessian matrix of f .
Introducing the orthogonal change of coordinates xi − pi =

∑
j rijyj and observing that

|x− p| = |y|, (7.2) becomes

f(x) = f(p) +
1

2

∑
i,j,k,m

∂2f

∂xi∂xj
(c)rikykrjmym + T

= f(p) +
1

2

∑
i,j,k,m

∂2f

∂xi∂xj
(p)rikykrjmym + T1 + T

= f(p) +
n∑
k=1

λky
2
k + T1 + T ,

where

T1 =
1

2

∑
i,j,k,m

(
∂2f

∂xi∂xj
(c)− ∂2f

∂xi∂xj
(p)

)
rikykrjmym ,

and |T |/|y|2 → 0 as y → 0. From |T1|/|y|2 → 0 as y → 0 we see that (a) and (b) hold. To
prove (c), let the eigenvalues be placed in ascending order where λ1 is negative and λn is
positive. At points of the form x = (x1, p2, · · · , pn), y = (x1 − p1, 0, · · · , 0), so

f(x) = f(p) + λ1y
2
1 + T1 + T ,
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where (|T1|+ |T |)/|y1|2 → 0 as x tends to p. Clearly f(x) < 0 = f(p) is negative for x 6= p
but close to it. On the other hand, by considering the point x = (p1, · · · , pn−1, xn) and
y = (0, · · · , 0, xn − pn), we have

f(x) = f(p) + λny
2
n + T1 + T .

As λn > 0, it follows that f(x) > f(p) for points x close to p which is of the form
x = (p1, · · · , pn−1, xn), xn 6= pn. Hence p is neither a local minimum point nor a local
maximum point.

In the two dimensional case, the eigenvalues of the Hessian matrix are found by solving
a quadratic equation. Knowledge from linear algebra would be helpful in higher dimen-
sion. However, we will not elaborate on this point.

Example 7.9. Study the local extrema of the function

f(x, y) = 3x2 − 6xy − 3y2 + 2y3 , (x, y) ∈ R2 .

We have
fx = 6x− 6y = 0 , fy = −6x− 6y + 6y2 = 0 ,

which shows that there are two critical points (0, 0) and (2, 2). Next, the Hessian matrix
of f is given by [

6 −6
−6 −6 + 12y

]
.

Its eigenvalues at (0, 0) are ±
√

72. According to the Second Derivative Test, (0, 0) is a
saddle. On the other hand, the eigenvalues at (2, 2) are given by 12 ± 2

√
18 which are

positive, hence (2, 2) is a local minimum point of f .

7.4 Constrained Extremal Problems I

In the previous section we have discussed how to find extrema of a given function in a set
which is the closure of an open set in Rn. Here we are concerned with extremal problems
satisfying some constraints in these sets.

To fix the ideas, let us examine the following special case. Let f be a function defined
in an open set G ⊂ R3 and g is another function in G such that the set

Σ ≡ {(x, y, z) ∈ G : g(x, y, z) = 0}

is non-empty. We would like to find the extremal points of f in Σ. The method of
Lagrange multipliers provides an effective way to find local extremal points lying in the
interior of Σ.
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Theorem 7.9. Settings as above, let p ∈ Σ be a local extremum of f on Σ. Suppose that
∇g(p) 6= (0, 0, 0). There exists some λ ∈ R such that

∇f(p)− λ∇g(p) = (0, 0, 0) .

The number λ is called the Lagrange multiplier of the problem. Here p is a local
minimum (resp. local maximum) of f on Σ means f(p) ≤ f(x) or f(p) ≥ f(x) for
x ∈ Σ ∩B for some ball B containing p.

Proof. Let p = (x0, y0, z0). As ∇g(p) 6= (0, 0, 0) by assumption, without loss of generality
let ∂g/∂z(p) 6= 0, by Theorem 6.2 there is a differentiable function ϕ from a disk D
containing (x0, y0) to some ball B containing p such that ϕ(x0, y0) = z0 and

g(x, y, ϕ(x, y)) = 0, (x, y) ∈ D .

Now, since p is a local extremum of f over Σ, the function

F (x, y) ≡ f(x, y, ϕ(x, y)) , (x, y) ∈ D ,

has a local extremum at (x0, y0). By the Chain Rule,

∂F

∂x
=
∂f

∂x
+
∂f

∂z

∂ϕ

∂x
= 0 ,

and
∂F

∂y
=
∂f

∂y
+
∂f

∂z

∂ϕ

∂y
= 0 ,

at (x0, y0). In other words,

∇f(p) · (1, 0, ϕx(x0, y0)) = 0, ∇f(p) · (0, 1, ϕy(x0, y0)) = 0 .

We see that ∇f is perpendicular to the tangent space of the surface Σ at p, so it must
point to the normal direction or vanishes. As the normal direction of the surface is given
by ∇g, we conclude that ∇f(p) and ∇g(p) must be linearly dependent, so that there
exists some λ such that ∇f(p) = λ∇g(p).

The situation becomes clear if we take the constraint to be g(x, y, z) = z. Then
g = 0 is simply the x-y-plane. A critical point p0 of f(x, y, z) on this plane sat-
isfies fx(p0) = fy(p0) = 0 but there is not restriction on fz(p0). The gradient of
f at the critical point is of the form (0, 0, fz(p0)) which points in the z-direction, so
(0, 0, fz(p0)) = fz(p0)(0, 0, 1) where λ is equal to fz(p0) in this case.

In view of Theorem 7.9 we call a point p0 ∈ G a critical point of f under the
constraint g = 0 if ∇g(p0) 6= (0, 0, 0) and ∇f(p0) = λ∇g(p0) for some real number λ.
Theorem 7.9 asserts that local extrema are critical points of f under g = 0. Like the
unconstrained case, there are non-extremal critical points such as saddles.
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Example 7.10. Let us go back to Example 7.7 in which we found the distance from the
origin to the plane x + y + z = 1 by reducing it to a minimization problem for some
function over the xy-plane. Now, regarding x + y + z = 1 as a constraint, we use the
Lagrange Multiplier to tackle the problem. We minimize the distance square

f(x, y, z) = x2 + y2 + z2 ,

subject to the constraint

g(x, y, z) = x+ y + z − 1 = 0 .

By Theorem 7.8, there is some scalar λ such that ∇f = λ∇g, that is,

2x− λ = 0, 2y − λ = 0, 2z − λ = 0 ,

at any local extremum (x, y, z). Summing these equations up, we get 2(x + y + z) = 3λ.
Using the constraint it yields λ = 2/3. Therefore, x = y = z = 1/3, that is, (1, 1, 1)/3
is the only critical point. Since the function x2 + y2 + z2 tends to ∞ uniformly as
(x, y, z) → ∞, this critical point must be the minimum point. The distance is therefore
given by √

1

32
+

1

32
+

1

32
=

1√
3
.

This approach enables us once again to find the general formula of the distance from a
point to a hyperplane, see exercise.

Example 7.11. The total cost of a product depends on labor and capital. Assume that
the cost of producing one unit of a certain product is given by the productivity function

P (x, y) = 20x0.5y0.5 ,

where x stands for the number of units of labor and y for the number of units of capital.
Each unit of labor costs $40 and each unit of capital costs $80. Now the total investment is
$1, 000, 000. How can we allocate the labor and capital to obtain the maximal production?
Here we want to maximize the function P subject to the constraint g:

40x+ 80y = 1, 000, 000.

We have ∇P = λ∇g, that is,

10x−0.5y0.5 = 40λ , 10x0.5y−0.5 = 80λ .

Eliminating λ from these two equations, we get x = 3y. Plugging in the constraint,
x = 10, 000 and y = 5, 000. We conclude that in order to produce the maximum units
of product, one should allocate 10, 000 units of labor and 5, 000 units of capital in the
production. (Let me justify the solution we got is really the maximum for those with
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mathematical mind. Indeed, we were considering the maximization of a non-negative,
continuous function P over the line segment 40x + 80y = 1, 000, 000 whose endpoints
are (25, 000, 0) and (0, 12, 500). This is a compact subset in the plane with P vanishing
at its endpoints. By Maximum-Minimum Theorem its maximum must attain inside the
segment.)

Observe that there are three equations in ∇f = λ∇g and yet in order to solve for
four unknowns x, y, z and λ we need one more equation. In fact, the last equation comes
from the constraint g = 0. Therefore, there are always four equations for four unknowns.
Of course, now the difficulty is how to solve this system. It usually involves a system of
nonlinear equations whose solvability resists skills from linear algebra which work only for
linear systems. One needs to solve the system case by case. Exercises have been carefully
chosen so that solvability comes rather handy. In real life one has to relies on computer
software to find the critical points numerically.

Example 7.12. Find all extrema of

f(x, y, z) = xyz , subject to g(x, y, z) ≡ x2

a2
+
y2

b2
+
z2

c2
− 1 = 0 , a, b, c > 0.

At a local extremum (x, y, z) we have

yz = λ
2x

a2
,

xz = λ
2y

b2
,

xy = λ
2z

c2
.

Multiply the first equation by x, the second by y and the third by z and then sum up.
Using the constraint one arrives at xyz = 2λ/3. In particular, it shows that λ, x, y, z 6= 0.
Putting xyz = 2λ/3 back to these equations, we conclude that all local extrema are given
by (±a,±b,±c)/

√
3 . Since f is a continuous function over the ellipsoid which is compact,

its global extrema must exist. By comparing the values of f at these local extrema, we
see that the minima are given by

1√
3

(−a, b, c) , 1√
3

(a,−b, c) , 1√
3

(a, b,−c) , 1√
3

(−a,−b,−c) ,

and the maxima by

1√
3

(a, b, c) ,
1√
3

(−a,−b, c) , 1√
3

(−a, b,−c) , 1√
3

(a,−b,−c) .
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Therefore, the minimal and maximal values of f are given by

fmin = − abc

3
√

3
, fmax =

abc

3
√

3
,

respectively.

This example has a geometric interpretation, namely, to inscribe a rectangular box
with faces parallel to the x, y, z-axes inside an ellipsoid so that its volume is the largest.
The volume is equal to 8xyz = 8

3
√
3
abc.

Although it is possible to remove one variable among x, y and z and reduce the prob-
lem to an unconstrained one, the reduction is very tedious. The method of Lagrange
multiplier is much more effective.

Many useful inequalities in analysis can be proved by the method of Lagrange mul-
tipliers. To illustrate this approach we establish the following fundamental Inequality,
which could be regarded as a far reaching generalization of the Cauchy-Schwarz Inequal-
ity (p = 2).

For p > 1, its conjugate number q is given by 1/p+ 1/q = 1.

Theorem 7.10 (Hölder’s Inequality). * For a, b ∈ Rn, both with non-negative compo-
nents,

n∑
j=1

ajbj ≤

(
n∑
j=1

apj

)1/p( n∑
j=1

bqj

)1/q

,

and equality sign in this inequality holds if and only if either (a) a or b is (0, 0, · · · , 0) or
(b)

(bq1, · · · , bqn) = λ(ap1, · · · , apn)

for some λ 6= 0.

Proof. * The idea of proof is to minimize the function

f(x) =
n∑
j=1

|xj|q

over the hyperplane H:
n∑
j=1

ajxj = 1,
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where a 6= (0, · · · , 0). It is clear that f tends to infinity uniformly as |x| → ∞, so the
minimum must attain. At this minimum point z we have

∇f(x)− λ∇

(
n∑
j=1

ajxj − 1

)
= (0, · · · , 0) .

The equations are given by

q|zj|q−1sgnzj = λaj , j = 1, · · · , n .

(Here we have used the formula d|x|/dx = sgn x where the sign function sgn x = 1,−1
or 0 according to x > 0, x < 0 or x = 0.) We need to determine λ. Multiply the j-th
equation by zj and them sum up in j to get

λ = q
n∑
k=1

|zk|q > 0 .

It follows that all zj are non-negative and

qzq−1j = λaj ,

hence

zqj =

(
λ

q
aj

)p
.

Summing it up,
λ

q
=

n∑
j=1

(
λ

q
aj

)p
.

After some manipulations we get

λ = q

(
n∑
k=1

apk

)−q/p
,

and

zj =
a
p/q
j∑n
k=1 a

p
k

, j = 1, · · · , n .

Therefore, the minimum point is unique and the minimum value of this minimization
problem is given by

n∑
k=1

zqj =

(
n∑
k=1

apk

)−q/p
.

In other words, (
n∑
k=1

apk

)−q/p
≤

n∑
j=1

|xj|q , whenever
n∑
j=1

ajxj = 1 ,
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and equality holds if and only if

xj =
a
p/q
j∑n
k=1 a

p
k

, j = 1, · · · , n . (7.3)

To deduce the inequality from this result, given a non-zero vector a = (a1, · · · , an), aj ≥
0, satisfying a · b > 0, the point

x = (x1, · · · , xn) , xj =
bj
a · b

, j = 1, · · · , n,

lies on H, so f(z) ≤ f(x), that is,(
n∑
k=1

apk

)−q/p
≤

n∑
j=1

|xj|q

=
n∑
j=1

|bj|q

(a · b)q
,

from which the (strict) inequality follows. Furthermore, the equality case follows from
(7.3). When a · b = 0, the inequality clearly holds.

7.5 Constrained Extremal Problems II

Next, we consider the problem of multiple constraints in R3. For instance, let g and h be
two differentiable functions defined in the open G in R3 and let

Γ ≡ {(x, y, z) : g(x, y, z) = 0 , h(x, y, z) = 0 , (x, y, z) ∈ G} 6= φ .

Theorem 7.11. Let f be a differential function in G ⊂ R3. If p is a local extremum of f
over Γ defined above. Suppose that ∇g and ∇h are linearly independent at p. There exist
λ and µ such that

∇f(p)− λ∇g(p)− µ∇h(p) = (0, 0, 0) .

Proof. Let p = (x0, y0, z0). According to Theorem 6.5, we may assume that there exists
γ = (γ1, γ2) from an open interval containing x0 to Γ satisfying γ(x0) = (y0, z0) and

g(x, γ1(x), γ2(x)) = 0, h(x, γ1(x), γ2(x)) = 0 .

Then x0 becomes an extremum point for the function ϕ(x) ≡ f(x, γ1(x), γ2(x)). By the
Chain Rule

ϕ′(x0) = ∇f(p) · (1, γ′1(x0), γ′2(x0)) = 0 ,
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which shows that ∇f(p) is perpendicular to the tangent vector of Γ at p. On the other
hand, we also have

∇g(p) · (1, γ′1(x0), γ′2(x0)) = 0 , ∇h(p) · (1, γ′1(x0), γ′2(x0)) = 0 .

By assumption, ∇g(p) and ∇h(p) are linearly independent, so they span the subspace
perpendicular to (1, γ′1(x0), γ

′
2(x0)). As∇f(p) belongs to this subspace, it can be expressed

as a linear combination of ∇g(p) and ∇h(p), the desired result follows.

Example 7.13. The plane H : x+y+z = 12 and the paraboloid P : z = x2+y2 intersects
to form an ellipse. Find the highest and lowest points of the ellipse from the ground. The
function to be optimized is the height function, which is given by f(x, y, z) = z. Taking
g = x+ y+ z and h = x2 + y2− z, we consider the matrix formed by the gradients of the
plane and the paraboloid: [

1 1 1
2x 2y −1

]
.

It is of rank 2 except when x = y = −1/2. However, when (x, y) = (−1,−1)/2, z =
12 − x − y = 13 but z = (1/2)2 + (1/2)2 = 1/2, so this point does not belong to the
intersecting ellipse. In other words, ∇g and ∇h are always linearly independent at the
ellipse. By Theorem 7.11,

∇f = λ∇g + µ∇h ,

at any local extremum. Looking at each of the components,

0 = λ+ 2µx, 0 = λ+ 2µy, 1 = λ− µ .

It is clear that µ 6= 0, so we have x = y. The constraints become 2x+z = 12 and z = 2x2,
which are solved to get x = 2 or −3. Therefore, there are two critical points (2, 2, 8) and
(−3,−3, 18). By observation the former is the lowest and the latter is the highest point.

We conclude this section by formulating the general case. Let g1, · · · , gm be m many
differentiable functions defined in some open set G ⊂ Rn where 1 ≤ m ≤ n− 1. Assume
that

X = {x ∈ G : gj(x) = 0, j = 1, · · · ,m} 6= φ .

In the following we set

M =


∂g1
∂x1

· · · · · · ∂g1
∂xn

· · · · · · · · ·
∂gm
∂x1

· · · · · · ∂gm
∂xn

 .
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Theorem 7.12. Let f be differentiable in G. Let p be a local extremum of f over X.
Suppose that M has rank m. There exist some λj, j = 1, · · · ,m, such that

∇f(p)−
m∑
j=1

λj∇gj(p) = (0, · · · , 0) . (7.4)

The proof of this theorem is essentially the same as the proof of the previous theorem
and is left to you. Any point p ∈ G at which M has rank m and which satisfies (7.4) is
called a critical point of f under gj = 0, j = 1, · · · ,m. Theorem 7.11 asserts that every
local extremum is a critical point of f under gj = 0.

As a last application let us prove the theorem on the diagonalization of symmetric
matrices which have been used several times before.

Theorem 7.13 (Principal Axis Theorem). * For every symmetric matrix A, there
exists an orthogonal matrix R such that

R′AR = D ,

where D is a diagonal matrix.

An orthogonal matrix is defined by the condition R′R = I where R′ is the transpose
of R. In other words, the inverse of an orthogonal matrix is equal to its transpose matrix.

Proof. * We will give the proof for n = 4. The general case does not contain any additional
difficulty. Let A = (aij), i, j = 1, 2, 3, 4, be a given symmetric matrix. Consider the
quadratic function

f(x) =
4∑

i,j=1

aijxixj .

First we minimize it over the sphere g0(x) =
∑4

j=1 x
2
j − 1 = 0. This is a compact set

so the minimum is attained at some u1 = (u11, u
1
2, u

1
3, u

1
4). As ∇g(x) = 2x 6= (0, 0, 0, 0),

Theorem 7.11 asserts that there exists some λ1 such that

∇f(x) = λ1∇

(∑
j

x2j − 1

)

at x = u1. In other words,
4∑
j=1

aiju
1
j = λ1u

1
i
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for each i = 1, · · · , 4. In matrix form

A


u11
u12
u13
u14

 = λ1


u11
u12
u13
u14

 ,

which shows that u1 is an eigenvector of A with eigenvalue λ1. Note that it is on the
sphere so |u1| = 1. Next we minimize f over two constraints, namely, g0(x) = 0, and the
hyperplane g1(x) ≡ u1 · x = 0. Again this is a compact set and ∇g0 and ∇g1 are linearly
independent on this set. Actually,

∇g0 · ∇g1 = 2x · u1 = 0,

that is, they are perpendicular to each other. By Theorem 7.11, letting u2 = (u21, u
2
2, u

2
3, u

2
4)

be its minimum point, there are two numbers λ2, µ such that ∇f = λ∇g0 + µ∇g1, that
is, for each i = 1, 2, 3, 4,

4∑
j=1

aiju
2
j = λ2u

2
i + µu1i

Multiply this equation with u1i and sum up over i,

4∑
i,j=1

aiju
2
ju

1
i = λ2

4∑
i=1

u2iu
1
i + µ

4∑
i=1

u1iu
1
i .

The left hand side vanishes as

4∑
i,j=1

aiju
1
iu

2
j =

4∑
j=1

λ1u
1
ju

2
j = 0 .

On the other hand,
4∑
i=1

u2iu
1
i = u2 · u1 = 0 .

It forces µ = 0, so u2 is a unit eigenvector of A with eigenvalue λ2. By construction it
is perpendicular to u1. At this point, more or less we know how to proceed further. Let
g2(x) = u2 · x and minimize f over gi(x) = 0 for i = 0, 1, 2. Since

∇g0(x) = 2x, ∇g1(x) = u1, ∇g2(x) = u2 ,

form an orthogonal set, they must be linearly independent at every point on their common
intersection. By Theorem 7.11 again the minimum point of f , u3, satisfies

4∑
j=1

aiju
3
j = λ3u

3
i + µ1u

1
i + µ2u

2
i ,
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for some λ3, µ1, µ2. Multiply this expression with u1i and sum up in i yield µ1 = 0.
Similarly, multiply it with u2i and then sum up in i yield µ2 = 0. We conclude that u3 is
a unit eigenvector of A with eigenvalue λ3.

To obtain the last eigenvector we fix a unit vector w that is perpendicular to u1, u2

and u3. We claim that Au4 is also perpendicular to uj, j = 1, 2, 3. For,

〈Aw, uj〉 = 〈w,A′uj〉
= 〈w,Auj〉
= λj〈w, uj〉
= 0 .

It follows that Aw must be a scalar multiple of w, that is , Aw = λ4w for some λ4. Now
we can take u4 = w and put u1, u2, u3, u4 together to form a 4× 4-matrix R. Then

AR = DR ,

where

D =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 .

Since each column of R is a unit vector and the columns are perpendicular, R is an
orthogonal matrix. We have completed the proof of the theorem.

Comments on Chapter 6

Optimization problem is one of the main applications of advanced calculus. You are
supposed to master all topics in this chapter in particular the followings

• Finding all maximun/minimum points of a function over a compact set. You need
to find all interior critical points as well as those critical points on the boundary of
the set and then compare their corresponding values. When the set is unbounded
such as the entire space or a half space, the behavior of the function at infinity must
be taken care of.

• Second Derivative Test. Use the Hessian matrix to investigate the local behavior
of a critical point.

• Lagrange multipliers in constrained problems: single and multiple constraints.

Supplementary Readings

5.1–5.4, 6.1, and 6.2 in [Au]. 14.7, 14.8, and 14.9 in [Thomas].


